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ABSTRACT

Evaluations of gamma-ray fluence are made for source geometries that depart from the flat
ground geometry that is used in standard applications of in situ spectrometry. Geometries
considered include uniform source distributions for soil mounds on top of flat terrain, cylindrical
wells, and rectangular trenches. The results indicate that scaling the standard fluence values for
flat terrain by the ratio of solid angle subtended by the soil to 2r leads to fluence estimates that
are accurate to within a few percent. Practical applications of in situ spectrometry in non-flat
terrain also appears to be simplified by the fact that the angular correction factor for a typical co-
axial detector in these geometries may typically be about the same as that computed for flat
ground.
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INTRODUCTION

In situ gamma-ray spectrometry is commonly used to measure radionuclide concentrations,
deposition, and associated dose rates in the outdoor environment (Beck et al. 1972; ICRU 1994).
Measurements performed over flat ground allow for the source geometry to be represented as an
infinite half-space, i.e., a 27 geometry in terms of the solid angle subtended by the source. In
situ spectrometry has also been applied on a more limited basis for indoor measurements (Miller
and Beck 1984; Miller et al. 1997). In this situation, the source geometry can sometimes be
approximated as 4, depending upon the uniformity of the surrounding source distribution.

A practical need has arisen in recent years for applications of in situ spectrometry to support
the vast environmental remediation efforts within the Department of Energy. In many situations,
measurements of radionuclide concentrations will have to be made in complex terrain, i.e., soil
that cannot be approximated as flat ground. For large departures from flat ground such as below-
grade measurements, the fluence per unit source concentration would be expected to vary
considerably from that calculated for a 27 source geometry.

This report examines the effects of varying the source geometry from that of flat ground.
Included are calculations of uncollided fluence (hereafter in this report termed simply as fluence)
for soil mounds on top of flat ground as well as depressions, namely, cylindrical wells (ditches)
and rectangular trenches of various dimensions. Comparisons to simple solid angle calculations
are made and conclusions are drawn which should tend to simplify the application of the
technique in non-flat terrain. The implications with respect to practical applications of in situ
spectrometry for such geometries and detector angular response are also examined.

C ALCULATIONS

BASIC CONSIDERATIONS

A common method of determining the radionuclide concentration is to take and analyze a
15 cm deep soil sample. After processing, this sample provides an average over that depth,
regardless of the actual profile in that soil cut. Instead of a straight average such as this, an in
situ spectrometric measurement provides an average that is weighted towards the surface soil
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where the weighting will vary according to the energy of the gamma ray. Depending upon soil
density, the effective averaging depth for an energy such as 100 keV is over the first few cm,
while for an energy such as 1000 keV, it is on the order of 10 cm. The viewing depth is greatest
directly under a detector and it grows more shallow as the radius outward increases. The overall
soil volume that is measured is thus shaped like a plano-convex lens.

Early on in the development in situ spectrometry, ground roughness was recognized as an
important factor that could effect the fluence reaching a detector from source distributions that
were on or near the soil surface (Beck et al. 1972). Even for freshly deposited fallout, a plane
source would tend to over-predict the fluence due to small undulations in the soil which would
essentially obstruct a direct line of sight to the source and thus provide shielding.

In environmental remediation work, however, most realistic source distributions will tend to
be deeply distributed and, in effect, best approximated by a uniform profile. Using a uniform
source profile as default is in keeping with cleanup criteria which tend to be dose-based and
specified as a uniform concentration in surface soil.

Approximating the source distribution as uniform and converting measured count rates to
concentrations virtually eliminates concerns over small perturbations in the terrain. A recent
study (Laedermann et al. 1998), has shown that ground roughness, as approximated with bumps
up to 20 cm in height in the terrain, is not an important factor for a measurement at 1 m above
the ground of sources that are distributed in the soil. As will be brought out in the following
sections, this is understandable from simple solid angle considerations and the fact that air
attenuation is a secondary effect for close distances to the source interface.

FLUENCE BASED ON SOLID ANGLE
Infinite Media

Equations to yield the fluence for a variety of standard source geometries can be found in
(USAEC 1956). Using a uniform source model allows for straightforward calculations of
fluence. The case of fluence within a cavity is considered first. If a single medium (which we
take to be soil or soil-like) is more than several mean free paths thick, it can be considered
infinite in thickness for photon transport. For 100 keV and 1000 keV, the mean free paths in
typical soil at a density of 1.6 g cm™ are about 4 and 10 c¢m, respectively. Neglecting the effects
of air attenuation, the fluence at a measurement point is simply a function of the solid angle
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subtended by the surrounding soil and its attenuation properties. Thus, within a cavity (full 4=
geometry) with a photon mass absorption coefficient ., (cm?* g"), density p (g cm™) and a photon
emission per unit volume S, (cm™), the fluence (cm™) is simply

=0 (1)
HpP

Infinite Half-Space Geometry

For a measurement point above flat ground (27 geometry or half-space), the fluence would
be just one half that given by Equation 1, again neglecting the effects of air attenuation. In
reality, the actual fluence would be somewhat less due to the presence of air and would therefore
depend upon the energy of the photon and the height above the ground.

Figure 1 shows the theoretical fluence per unit source strength (1 photon per gram) as a
function of energy for a flat ground geometry based on this simple solid angle model using
values of p, given for typical soil at a 10% moisture content and a density of 1.6 g cm™. Also
shown in this figure are the results of calculations for a point 1 m above the ground using this
same soil mix and taking into consideration the air attenuation effect (Beck et al. 1972). Despite
neglecting the air attenuation effect, the solid angle calculation overestimates the actual fluence
by only about 11% at 50 keV. This percentage overestimate gradually reduces to about 2% at
2500 keV. Thus, the simple solid angle model gives fair results for a detector that is not too far
(on the order of a meter) from the source interface.

Solid Angle Generalization

Other source geometries besides flat ground can be considered in terms of their solid angle.
The differential solid angle in a polar coordinate system, as depicted in Figure 2, is expressed as

dQ =sinf'd@' do 2)

Integration can then be performed over the volume of interest to give the total solid angle
subtended.
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Figure 1. Fluence as a function of energy at 1 m above flat ground with a uniform source
distribution with depth and a source emission of 1 photon per gram of soil.



Figure 2. Differential solid angle element in polar coordinate system.

Soil Mounds

The case of one or more soil mounds on top of an otherwise flat terrain presents no change to
the solid angle if the mounds lie below the horizontal plane of the detector. Thus, for a detector
that is 1 m above the ground, mounds of up to 1 m in height would only modify the fluence at the
measurement point from changes in the air path length and resultant attenuation. For each meter
of air, attenuation amounts to only 1.8% at 100 keV and 0.8% at 1000 keV.



The presence of mounds does change the particular soil volume being measured. The near
side of a thick mound is essentially viewed by the detector, and the volume of soil on the far side
of the mound, as well as the area of ground that is shadowed behind the mound, does not
contribute to the measured fluence. This type of shadowing effect is depicted in Figure 3.

Figure 3. Shadowing effect produced by the presence of a soil mound atop flat terrain
within the field of view of a detector.

Placing a mound directly under a detector also does not change the solid angle from 2= if the
mound is finite in size and superimposed over flat terrain. A change in the solid angle would
only occur for a measurement point at the apex of a hilltop (as approximated by a cone) where
the ground slopes downward to infinity in all directions, which in practical applications, is not
realistic.

Well Geometry

In the case of a cylindrical well (Figure 4), we note the point P at some height 4 above the
floor of the well at a radial distance X to the wall of height H.



The solid angle missing from the soil source geometry (the open sky area overhead) is given
by

2m 6
Q' = J Jsin@'d@'dqo (3)
which yields
Q' =2m(1-cosq) (4)

Figure 4. Cylindrical well geometry.

The solid angle subtended by the soil, Q, is 4t minus this quantity and since cos@’= sin&,
where @is the complement of 6, we have

Q=2m(1+sin Q) (5)



The critical angle 0, (henceforth called the horizon angle, i.e., the angle measured from the
horizontal to the point of soil-air interface at the top of the well) can be related to the well

6. =tan" (HT—h) (6)

dimensions as

Trench Geometry

For the case of an infinitely long trench, we refer to Figure 5 where we note the point P is in
the middle of the trench at some height 4 above the trench floor and a wall height H. The
distance to the wall is denoted as X which is the trench half-width.

Figure 5. Generalized vertical wall trench geometry.



Using the previous result, the solid angle subtended by the soil volume in the half space
above point P would be

Q= f;in[eﬂoa do (7)

where @, is seen to be a function of ¢, that is,

0, = [ =1 c0s0] N

Using symmetry we can break the computation into four equal quadrants and the total solid
angle of soil subtended in the center of the trench would be

Q=4 fsin {tan' ! [W] } de 9)

which yields
Q =4tan (L51) = 49, (10)

where 6, is the horizon angle at ¢ = 0. The volume of soil below point P represents a half-space
or 27 contribution so the total solid angle for the trench geometry would then be

Q,=2m+ 44, (11)

Apart from neglecting air attenuation, an additional source of overestimation using a simple
solid angle model occurs from treating the soil at the top edge of the well or trench as infinitely
thick. In fact, the photon path length through the soil tends to be less than several mean free
paths at the top edge, although the fraction of the total soil volume where this holds true is rather
small. With this in mind, a reasonable upper bound to the fluence can, therefore, be calculated
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using Equation 1 and scaling the result by the fraction of the full 4r solid angle given by either
Equations 6 or 11, i.e., the ratio Q/4n. The results of these solid angle calculations will be
subsequently used as a basis of comparison to calculations that take into account the air
attenuation effect.

FLUENCE WITH AIR ATTENUATION EFFECT

To calculate the fluence for the source geometries investigated in this report, a point kernel
numerical integration method was applied. Alternative methods include analytical solutions
using series expansion or Monte Carlo methods. However, numerical integration methods are
straightforward to set up, flexible in adjusting source terms within the geometry, and, given the
processing speed of current desktop computers, not unduly slow to perform.

In general, the total fluence (cm™) for a point P that is not close to the source, i.e., tens of cm
or more (Figure 6), is the summation of the contribution from all volume elements of source
strength, S, (photons per cm®), with dimensions Ax Ay Az within some volume, ¥

e—ﬂpapara e—u%perSiAxAyAZ
b =
Z 471 r? (12)

1

where 7 (cm) is the distance the photon traverses, that is, 7, + 7, or «(x*+y*+z”) and the subscripts
a and s denote the respective air and soil values for the mass absorption coefficient, density, and
distance.

Given the scale of the detector/source geometry and the absorption properties of soil, a
volume element 1 ¢m’® in size was used to perform the calculations. This is considered
sufficiently small to achieve adequate accuracy for the source/detector geometries used in this
study. As a justification, note that the self attenuation for parallel fluence through a volume of
thickness, ¢, with a uniform source concentration is given by the expression

1 - e P!
- = —— (13)
1, H,Pt
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Figure 6. Soil volume element for arbitrary geometry in rectilinear coordinate system.

For a density of 1.6 g cm™ and x = 1 cm, this gives an attenuation value of 0.878 at 100 keV
and 0.951 at 1000 keV.

Alternatively, using the center point of the volume, the self attenuation can be approximated
by

i = e HopPl2 (14)
]0

which for 100 and 1000 keV yields respective attenuation values of 0.875 and 0.950. These
compare quite favorably to the exact values computed with Equation 13.

For low energies and large radial distances (>10 m), the use of a 1 cm’ size volume element
begins to lead to a noticeable underestimate in the fluence due to the large diagonal path through
the soil volume element. An evaluation of the sensitivity to volume element size indicated that
the use of 1 cm’ led to convergence in the integrated fluence for finite geometries, while
maintaining an accuracy in the total fluence of better than 1% at high energies (1000 keV), and
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not worse than 2% at low energies (100 keV) for the trench and well dimensions used in this
study. This was based on comparisons of this integration method to that of analytic solutions for
a flat ground geometry.

The limits of integration were chosen to be 100 cm for depth into the ground or trench/well
wall. In the case of the trench calculation, the limit in the z direction was 30 m. These limits are
sufficient to account for essentially 100% of the fluence. Several different BASIC codes were
written using double precision (16 digits) to perform the calculations for the different
geometries. These are listed in Appendix A.

Soil Mounds

A few calculations were carried out to verify the insensitivity of the fluence to mounds less
than the detector height. For example, the effect of a single mound, 50 cm high and 1 m wide
extending half way around a detector at 1 m above the ground (a crescent shaped mound) would
only result in a fluence increase of less than a half percent at 1 MeV. A similar shaped mound
of the same thickness at a height of 1 m would lead to about a 2% increase. In the limit, the
thickness, size, and number of mounds encircling a detector in effect leads to a well geometry,
the results of which are given in the next section.

The situation of a mound under a detector would also produce minor effects. In the limit, for
an infinitesimally narrow mound of some height, h’, the fluence would be reduced to that for a
detector at a height of h + h’ above the ground. The reduction would reflect the increase in the
air attenuation and would amount to about 6% at 100 keV and 3% at 1000 keV for h’ =1 m.
Any finite size mound of this height under the detector would thus produce even less of an
effect.

Well Geometry

The case of the cylindrical well represents a geometry that reduces to two dimensions due to
symmetry about the angle ¢ (Figure 7). The summation can thus be performed over rings of soil
having circumference 2mx. Equation 11 can then be rewritten as

o = e-jﬁhé?ﬁ _14%‘gﬂ‘x S; le[\y
> 2 (15)

i
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where the distance to a volume element is just

r=Lx?+y? (16)

The path length through the air is given by

n, = (6 >6,) (17)

and

= (8 <6,) (18)

where 6, = tan'(h/X) defines the angle from the horizontal to the juncture of the well floor and
wall. The path length through the soil for all values of @is then just

n=r-r, (19)

|~

Figure 7. Cross section of a cylindrical well geometry.
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Figure 8 shows the results of the calculations for the center of the well 1 m above the floor
(h =1 m) for wall distances (radii) of 1, 2, 3, 5, and 10 m, as a function of wall heights from 1 to
5 m. Two sets of curves are shown, one for a representative low energy of 100 keV and the
other for a representative high energy of 1000 keV. In place of reporting the actual fluence at
these energies, the fluence relative to that for the standard values for these energies at 1 m above

flat ground and a uniform distribution in the soil, designated as ®,,,, are given. These relative

Im>
fluence values thus represent the degree of overestimate one would make in performing a
measurement in such a well and reporting a concentration based on a detector calibration for the
standard flat ground geometry, assuming there is no significant difference due to the angular

dependence in the detector response.

Relative Fluence

Well Height, H (m)

Figure 8. Relative fluence results from numerical integration for well geometry for a
detector 1 m above the floor (dashed line - 100 keV; solid line - 1000 keV).
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For wells 1 m in height (the same height as the detector), the relative fluence is just a few
percent above unity. This is consistent with the findings for soil mounds below the plane of the
detector. In essence, surrounding the detector with a ring at the same height maintains the 2n
geometry of the normal flat ground half space. The fluence is only slightly higher because the
outer regions of the ground have been folded up to a wall which then results in less air
attenuation as compared to the outlying areas for flat ground.

Also, the fluence for an extremely narrow and deep well (X =1 m, H=5 m) is somewhat
higher than twice that of flat ground. This results from the fact that it is nearly a 4n geometry
(double that of flat ground) and, on average, there is a smaller air path length for the photons.

It is of some interest to examine the contributions from the floor and wall of the well to the
total fluence measured. Again, the fluence relative to that for the standard values for these
energies at 1 m above flat ground and a uniform distribution in the soil are given. Figure 9 shows
the relative contribution from the floor as a function of wall distance, X. The wall contribution
would thus be the total relative amount as given in Figure 8 minus this quantity. For example,
for X =1 m at 100 keV, the relative contribution from the floor is 0.3 using Figure 9. In Figure
8, the total for a well height of 2 m is 1.8, meaning about one sixth of the fluence comes from the
floor as compared to five sixths from the wall for this case.

The results for either the 100 keV or 1000 keV in Figures 8 and 9 are not very different,
despite the large range in energy. This is consistent with the behavior of the fluence data
exhibited in Figure 1, that is, the solid angle effect dominates and the air attenuation effect is a
second order effect. Hence, the relative fluence scales according to the well dimensions with
relative insensitivity to energy.

Trench Geometry

For the generalized case of a trench with non-vertical walls, we refer to Figure 10 where X is
the half-width of the trench at its base (distance to the wall base from the center point), H is the
vertical trench height, and w is the slope angle of the trench wall with respect to the horizontal.
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Given the origin of the coordinate system at point P, the distance to any volume element can
be expressed in rectangular coordinates as

F= X2+ y?+ 22 (20)

For 8< 6, the air and soil path lengths are given by the same equations for a cylindrical well
(Equations 17-19), i.e., the photon path is through the floor using the above expression for r.
Also, 6, = f(z), specifically

6‘tn‘1D h N
= e @

b

In the plane defined by z = 0, the path length through the soil for 8>6, is given by

(h+y) 1] .
[x —Xb ~ “tanc Jsinw

v, = - 22
0 sinfw - tan™'(y/x)] @2)
and for z #0, the soil path length is scaled as

K= x2 + y2 So (23)
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The air path, for all values of @ and z, is then just

I =1r—K (24)

Figures 11 and 12 present the results of calculations at the center of a trench for cases of
vertical (w = 90°) and sloped walls (w =26.565°, i.e. tan w = 0.5 or a 1:2 wall slope) for a
detector height of 1 m above the trench floor. Given the rather small differences between
energies as exhibited by the results for the well geometry, calculations were performed only for
1000 keV. Again, the fluence is expressed as relative to that for 1 m above flat ground.

As in the case of the well geometry, trenches at the same height as the detector result in a
fluence that is only slightly higher than that of flat ground. Also, the fluence for narrow deep
trenches (X = 0.5 m vertical wall) will approach double that for flat ground.
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Figure 11. Relative fluence results from numerical integration for vertical wall trench
geometry at 1000 keV for a detector 1 m above the floor.
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Figure 12. Relative fluence results from numerical integration for sloped (2:1) wall

trench geometry at 1000 keV for a detector 1 m above the floor.

Analogous to Figure 9, Figure 13 presents the relative fluence contribution at 1000 keV from

the floor of the trench as a function of distance to the wall. For any given wall distance, the

trench geometry has a higher fraction of fluence from the floor area as compared to the well

geometry since the floor extends to infinity in the z direction. For instance, at X =1 m, the

relative fluence contribution is about 0.5 as compared to about 0.3 for the well geometry. Also,

the effect of sloping the wall decreases the fluence contribution from the wall for the same A

value. This can be understood intuitively as the solid angle subtended by the wall becomes

smaller as it slopes away from point P.
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HORIZON ANGLE PARAMETERIZATION

From Equations 5 and 11, we can see that the solid angle can be expressed purely as a
function of the horizon angle, 6., for well and trench geometries. Since the fluence can be
expected to vary according to the solid angle subtended by the soil, we can take the results of the
calculations for the well and trench geometries and express them as a function of the single
parameter, 6., rather than the two dimensions X and H.
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Figures 14 (100 keV) and 15 (1000 keV) shows the relative fluence for the well geometry as
a function of g, as individual points along with two continuous curve fits for various X and H
combinations (same data set as used in Figure 8). The upper curve (broken line) represents the
relative fluence that is predicted on the basis of the solid angle (no air attenuation), that is,

o, Qs 05
- 25
q%m 47TL%fIDhn
22— T ]
2.0 SRVLAEYS
' L L .
s o] TR
= | L .
© §
2 1 K
E 1.4 ’,»" ‘Q
& I ,” %
% e i : <+ numerical integration
=} 3 .
L 12 i ‘ o: ------ solid angle prediction L
- *
. * scaled half-space prediction
%
10—t
0 10 20 30 40 50 60 70 80 90

Horizon Angle (6.)

Figure 14. Relative fluence for the well geometry as a function of the horizon angle,
6. for 100 keV.
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Figure 15. Relative fluence for the well geometry as a function of 0, for 1000 keV.

The lower curve (solid line) represents the fluence as calculated for normal flat ground scaled
according to the increase in solid angle above that of a half space. This curve thus includes the
effects of air attenuation and assumes that the effect scales proportionately with the increase in
the solid angle. This is expressed as

=— (26)
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The two curves more or less bound the numerical integration values with the range being
about + 10% for 100 keV and about + 5% for 1000 keV. The differences seen for two or more
data points at the same horizon angle value are due to the effects of air attenuation. A higher
wall further away that subtends the same solid angle as a smaller wall close up will have a lower
fluence due to an longer average air path length for the fluence.

The values of the fluence from the numerical integration are always less than the simple solid
angle prediction. This is due to air attenuation effects that are neglected in the solid angle
prediction. In contrast, the calculated fluence values tend to be higher than the scaled half space
prediction. This is due to an overcompensation, on average, for the effects of air attenuation
using the scaled half-space prediction.

Figures 16 and 17 present the analogous data for the case of the trench geometry. Here a
limited set of values were computed at 100 keV (Figure 16) using the same range in X and H as
before. In addition to the data generated for a height of 1 m above the floor, fluence values were
calculated for a number of X and H combinations, where # = 0.3 m. Deviations of the numerical
integration values from the two curves tend to be a few percent for 100 keV. For 1000 keV, the
values are in very good agreement with the curves, given the estimated 1% error in the
calculation. Overall, the figures demonstrate the relative insensitivity of the fluence to energy,
wall base distance, wall slope, wall height and detector height when simply using @, as the basis
for computing fluence.

OFF-CENTER POSITIONS IN TRENCHES

For a small well geometry, a measurement in the center is a logical position to obtain an
average concentration. However, excavation work to support environmental remediation is more
likely to produce trench-like geometries. In practice, it will then be necessary to perform
measurements not only at regular intervals along the length of the trench (z direction), but also
across the width of the trench (x direction). Given the fairly good accuracy with which fluence
can be predicted using the single parameter 8, the variation with x can be shown via solid angle
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computations by considering two half trenches, i.e., two single walls at different distances. (In
some cases, a single wall may be present which effectively reduces the geometry to a half
trench.) By symmetry, Equations 10 and 11 can be rewritten as the sum of two components so
that the total solid angle is given by

_ -1 — -1 - —
Q, =27+ 2tan (§_£)+2tan (§+£) =2(rr+ @+ ) (27)

where x is the distance off center and 6., and 6., are the horizon angles for the two walls.

Figure 18 graphs this function for a detector height of 1 m for two different wall heights (2
and 5 m) and four different trench half-widths (1, 2, 3, and 5 m) as a function of the offset
distance from the trench centerline. In the case of the 5 m wall height, the fluence is relatively
insensitive to the position in the trench for half-widths of up to 5 m. In the case of the 2 m wall
height, most of the increase in the solid angle is seen to occur when distances are within 1 m or
so from one of the walls. Thus, in practice, exact positioning of a detector is not necessary to
obtain an accurate reading as long as one is not very close to the wall. Intuitively, this can be
understood as the angle 6. changes rapidly as one gets close to the wall face. In the limit, the
solid angle subtended by the wall becomes 21 on contact and with a quarter-space contribution
from the trench floor of © (half the normal flat ground contribution), the total solid angle would
be 37, not including any contribution from the more distant opposite wall.

DETECTOR CONSIDERATIONS

ANGULAR DISTRIBUTION OF FLUENCE

The complete calibration of a detector for in situ spectrometry entails the evaluation of its
response to photon fluence over all angles of incidence. For cylindrical-shaped detectors
mounted with their axis of symmetry perpendicular to the ground, variations in the response
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Figure 18. Fraction of full 4r solid angle as a function of distance from trench center for
H =2 m (solid line) and H = 5 m (dashed line).

about the azimuth angle ¢ are generally negligible. However, this is generally not the case for
the zenith angle, 8’ (which in this case we measure from the vertical to the soil interface.) For
this reason, an angular correction factor is computed which weights the relative response of the
detector normalized to the detector face, R(6), with fluence distribution. For a flat ground
geometry, there is no dependence of ® on ¢, so that the angular correction factor (counts
measured in the given geometry relative to counts at normal incidence) is computed by

7T/2
I R(0")D(6')de
N =t (8)
I o (6')d6'
0
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For the case of flat ground, the distribution of ® with respect to 6”is fairly insensitive to the
photon energy for uniform source distributions in the soil. This is evidenced by the two
distributions shown in Figure 9 that show little difference between 100 and 1000 keV as a
function of X. In view of the domination of the solid angle effect, we would expect ® to vary as
sin 8°. Indeed, even for the case of flat ground geometry where there is long air path lengths at
large angles to the soil interface, ® follows sin &“to within a 3% or less.

Figure 19 shows data from an experimental determination of R at four different energies for
one particular germanium (Ge) co-axial detector that is mounted to a small hand-held Dewar.
This Ge crystal, in this case, had a length/diameter ratio of 0.8 which leads to the general
characteristic fall-off in response for sidewall (90°) photon incidence. The very sharp fall-off for
angles greater than 150° results from shielding by the Dewar. However, as evidenced by the sin
0’ function, the weighting is large at angles near sidewall incidence.
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Vg, .\“
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Figure 19. Example of angular response for a Ge detector as compared to relative
solid angle (sin function).
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In principle, the limits of integration in Equation 28 can be adjusted to compute an angular
correction factor for any geometry with symmetry about @, such a cylindrical well. Table 1 lists
the evaluations for three different geometries using the data in Figure 19. Going from the flat
ground case to the extreme of a full 4r space shows that the detector response would only
change by 11% at the lowest energy and just 2% at the highest. The 0° to 120° case would be
representative of wells that are not too deep with respect to their width at the top, e.g., a 1:2 wall
slope. Here, the difference between the angular correction factors from those of flat ground are
reduced to 6% at the lowest energy and 0% at the highest.

In the case of trenches, the distribution of ® will vary with both 8”and ¢. However, in this
case, the difference in the angular correction factor from that of flat ground would become even
less than that of the well geometry since a larger fraction of ® will originate from the floor of the
trench.

The relative insensitivity of the angular correction factor has important practical
implications. If this quantity does not change significantly for a detector from that of flat
ground, then a single correction factor that is representative of the likely geometries to be
encountered can be used. This obviates the need to make individual evaluations for each source
geometry. It must be pointed out, however, that the response of the detector across the range of
incident angles needs to be checked to insure this. If they are to be used in measurements,
particular attention must be made to low energies where most variation will occur.

TABLE 1

EXAMPLE ANGULAR CORRECTION FACTORS
FOR THREE DIFFERENT GEOMETRIES

Energy (keV)
Geometry 121 344 662 1408
Flat ground 0.81 0.86 0.89 0.93
0 to 120° 0.76 0.83 0.87 0.93
41 0.72 0.80 0.84 0.91
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PRACTICAL APPLICATION IN THE FIELD

Below-grade applications of in situ spectrometry present additional challenges with respect
to personnel and equipment handling as compared to standard measurements on flat ground.
Despite the added complexity of having to determine the geometry correction factor, below
grade measurements have one advantage, namely, there is better definition of the soil volume
being measured. That is to say, the field of view of the detector is restricted to the soil inside the
well or trench. Contributions from distant sources are screened out by the very nature of the
source geometry and the soil shielding properties. After excavation of contaminated soil, it is
the remaining soil in the walls and floor of the cavity that require measurement to certify if
cleanup criteria have been met.

Interestingly, the well geometry is like that of a standard re-entrant (Marinelli) beaker
counting geometry that is commonly used for soil samples for laboratory-based gamma-ray
spectrometry systems. The detector is surrounded on its sides and front face with the source
containing material. In some sense, the well with the detector at its center represents an ideal
geometry where there is a near equal contribution from the surrounding soil volume elements. A
reasonably good “true” average is obtained of the radionuclide concentration, notwithstanding
variations that may occur with depth into the wall or floor of the well.

The trench geometry, while not as confined as that of a well, can be treated in a linear
fashion by making measurements at regular intervals along the length of the trench. Defining a
trench as an individual survey unit would be a reasonable approach and, in this way, a reasonable
average may be had.

To better define potential areas of remaining contamination (wall vs. floor, for example),
detector collimation can be employed. In this case, calibration must be performed over the
viewing area of the detector with the collimator in place. In lieu of this, deconvolution
techniques can be applied. These have been demonstrated to perform well for applications over
flat ground (Reginatto et al. 1997) and, in principle, should work equally well for a geometry
such as a trench.

The situation may arise where there is known or suspected dichotomous source distribution
in the surrounding soil, for instance, uranium contamination at the bottom of a well and some
natural background concentration in the walls. In this situation, the fluence contribution and the
concentration of the background source would have to be determined and the following formula
applied
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where . is the total concentration in the contaminated volume, ¥, is the effective average
concentration measured by the detector, x, and ®, are concentrations in, and the fluence from
the background volume, and @, is the total fluence.

C ONCLUSIONS

The application of in situ spectrometry to the case of non-flat terrain is not precluded by the
complexity of the source geometry. One can perform the necessary calculations to derive the
fluence per unit source activity for any geometry. Since the detector response to fluence is
independently determined, the measured fluence can be converted to concentration in the
surrounding media.

In the case of soil mounds or similar projections below the plane of the detector, there is
minimal change in the fluence from that of flat ground for uniform source distributions. Since
below terrain geometries are more confined than that of a flat ground geometry, the effect of air
attenuation is diminished to the point where basic solid angle estimates should suffice in most
cases for determining the fluence at a measurement point.

For compliance purposes, an overestimate of the concentration is more desirable than an
underestimate. In applying a calibration factor, a measured count rate is converted to fluence
rate by dividing by the efficiency of the detector, and the resulting measured fluence rate is in
turn converted to concentration by dividing by the predicted fluence rate per unit concentration.
This means that scaling the predicted fluence that is derived for flat ground geometry by the ratio
of solid angles (equation 26) would generally provide a conservative estimate of concentration.
Alternatively, one can apply the flat ground calibration factors to some geometry, a, and then
scale the measured concentration according to the ratio of solid angles to give the concentration
in geometry, a , i.e.
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Xa:Q—a . (30)

The application of simple solid angle scaling must take into account the angular response of
the detector. The angular correction factor needs to evaluated for various geometries to ensure
that errors would be acceptable. Where they are not, specific calibration factors must then be
applied to the measurement geometry. Particular care must be exercised for low energies.

Overall, it appears that the use of simple solid angle corrections would not introduce more
than a few percent error in measurements of concentrations. Since the specification of a
geometry in terms of the precise dimensions is difficult to determine in practice, acceptance of a
few percent error is not unreasonable. Where rough characterization is to be done, this is well
within acceptable limits on error. For certification or final status measurements, this degree of
error may also be acceptable depending upon data quality objectives.
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APPENDIX A

The following are listings of the BASIC programs used in the numerical integrations of
fluence for the cases of a cylindrical well, vertical wall trench and sloped wall trench source
geometries. Note that variable names are in some places different from the notation used in this
report. Also, the +y direction is down and the origin is set at the detector height.

For the most complicated case involving the sloped wall trench, the running time for a single
case is several hours using a 200 MHz Pentium PC.
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10 REM "FLUXPIT" MODIFIED JULY 1, 1998

20 REM THIS PROGRAM USES NUMERICAL INTEGRATION IN DOUBLE PRECISION
30 REM TO COMPUTE FLUX IN A CYLINDICAL PIT WITH UNIFORM
CONCENTRATION

35 REM INTEGRATION IS CARRIED ONLY TO 100 CM DEPTH AND 1 METER
BEYOND RADIUS

40 INPUT "ENTER PIT WALL DEPTH(cm) WHERE 0 IS DET. HEIGHT AND + IS DOWN:
" MH:

50 INPUT "ENTER RADIUS OF PIT - LLE. DISTANCE TO PIT WALL(cm): ", X1:

70 INPUT "ENTER MU/RHO FOR AIR: ", XAIR: MUAIR =.0012 * XAIR

80 INPUT "ENTER MU/RHO FOR SOIL: ", XSOIL: MUSOIL = 1.6 * XSOIL

100 FOR X = 0 TO X1: PRINT X, FLX#

110 FOR Y = 100 TO 200

120 R = SQR((X +.5) * (X +.5) + (Y +.5) * (Y +.5))
124 AX =100 * R/ (Y +.5)

126 SX =R - AX

140 GOSUB 800

150 NEXT Y

160 NEXT X

170 FLOOR# = FLX#

200 FOR X = X1 TO (X1 + 100): PRINT X, FLX#
210 FOR' Y =MH TO 99

220R=SQR((X+.5)* X+ .5+ (Y +.5)*(Y +.5)
224 AX=X1*R/(X+.5)

226 SX =R - AX

240 GOSUB 800

250 NEXT Y

260 NEXT X

270 WALL# = FLX# - FLOOR#

300 FOR X = X1 TO (X1 + 100): PRINT X, FLX#

310 FOR Y = 100 TO 200

315 YLIM = 100 * X / X1

320 R = SQR((X +.5) * (X +.5) + (Y +.5) * (Y +.5))

322 IF (Y +.5) > YLIM THEN AX = 100 * R / (Y +.5): GOTO 326
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324 AX=X1*R/(X+.5)

326 SX=R-AX

340 GOSUB 800

350 NEXT Y

360 NEXT X

370 CORNER# = FLX# - WALL# - FLOOR#

500 PRINT

505 PRINT "TOTAL FLUX =", FLX#

510 PRINT "FLOOR FLUX FRACTION =", FLOOR# / FLX#
520 PRINT "WALL FLUX FRACTION =", WALL# / FLX#

530 PRINT "CORNER FLUX FRACTION =", CORNER# / FLX#
600 GOTO 999

800

810 FLX# = FLX# + (EXP(-MUAIR * AX) * EXP(-MUSOIL * SX) * 1.6 * (X +.5)/ 2 * R *
R))

820 RETURN

999 END
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10 REM "FLUXTRENCH VERSION 2" MODIFIED JUN 1, 1998
20 REM THIS PROGRAM USES NUMERICAL INTEGRATION IN DOUBLE PRECISON
MODE

30 REM TO COMPUTE FLUX FOR A RECTANGULAR TRENCH WITH UNIFORM
CONCENTRATION

35 REM INTEGRATION IS CARRIED ONLY TO 100 CM DEPTH AND 30 M LENGTH
40 INPUT "ENTER DISTANCE TO WALL (CM)): ", X1

50 INPUT "ENTER WALL HEIGHT IN CM(WHERE 0 IS DETECTOR HEIGHT AND + IS
DOWN): ", MH:

60 INPUT "ENTER DETECTOR HEIGHT ABOVE FLOOR: ", DH

70 INPUT "ENTER MU/RHO FOR AIR: ", XAIR: MUAIR = .0012 * XAIR

80 INPUT "ENTER MU/RHO FOR SOIL: ", XSOIL: MUSOIL = 1.6 * XSOIL

100 FOR X =0 TO (X1 - 1)
110 FOR Y = DH TO DH + 100
115 FOR Z = 0 TO 3000

120 R=SQR((X +.5) * (X +.5) + (Y +.5) * (Y +.5) + (Z+.5) * (Z+.5))
124 AX=DH * R /(Y +.5)
126 SX =R - AX

140 GOSUB 800

145 NEXT Z

150 NEXT Y

160 PRINT X, FLX#: NEXT X
170 FLOOR# = FLX#

200 FOR X = X1 TO (X1 + 100)
210 FORY = MH TO DH - 1
215 FOR Z = 0 TO 3000

220 R =SQR((X +.5) * (X +.5) + (Y +.5) * (Y +.5) + (Z+.5) * (Z+.5))
224 AX=X1*R /(X +.5)

226 SX =R - AX

240 GOSUB 800

245 NEXT Z

250 NEXT Y

260 PRINT X, FLX#: NEXT X
270 WALL# = FLX# - FLOOR#
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300 FOR X = X1 TO (X1 + 100)
305 IF X1 =0 THEN YLIM = DH + 101: GOTO 310

306 YLIM = DH * X / X1

310 FOR Y = DH TO DH + 100

312 FOR Z = 0 TO 3000

320 R = SQR((X +.5) * (X +.5) + (Y +.5) * (Y +.5) + (Z + .5) * (Z + .5))
322 IF (Y +.5) > YLIM THEN AX = DH * R/ (Y +.5): GOTO 326

324 AX=X1*R /(X +.5)

326 SX =R - AX

340 GOSUB 800

345 NEXT Z

350 NEXT Y

360 PRINT X, FLX#: NEXT X

370 CORNER# = FLX# - WALL# - FLOOR#

500 PRINT

505 PRINT "TOTAL FLUX =", FLX#

510 PRINT "FLOOR FRACTION =", FLOOR# / FLX#
520 PRINT "WALL FRACTION =", WALL# / FLX#

530 PRINT "CORNER FRACTION =", CORNER# / FLX#
600 GOTO 999

800

810 FLX# = FLX# + ((EXP(-MUAIR * AX) * EXP(-MUSOIL * SX) * 1.6) / (4 * 3.14159 * R *
R))

820 RETURN

999 END
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10 REM "FLUXTRAP" MODIFIED APR. 8, 1998

20 REM THIS PROGRAM USES NUMERICAL INTEGRATION IN DOUBLE PRECISON
MODE

30 REM TO COMPUTE FLUX FOR A SLOPED WALL TRENCH WITH UNIFORM
CONCENTRATION

35 REM INTEGRATION IS CARRIED ONLY TO 100 CM DEPTH AND 30 M LENGTH
40 INPUT "ENTER DISTANCE TO WALL BASE (CM)): ", X1

50 INPUT "ENTER WALL HEIGHT IN CM(WHERE 0 IS DETECTOR HEIGHT AND + IS
DOWN): ", MH:

55 INPUT "ENTER DETECTOR HEIGHT ABOVE FLOOR: ", DH

60 INPUT "ENTER SLOPE ANGLE OF WALL (DEGREES FROM HORIZONTAL): ",
THETA: SLP = 3.141592654# * THETA / 180

65 X2 = X1 + CINT((DH - MH) / TAN(SLP)): PRINT " TOP OF WALL (X2) DISTANCE =",
X2

70 INPUT "ENTER MU/RHO FOR AIR: ", XAIR: MUAIR =.0012 * XAIR

80 INPUT "ENTER MU/RHO FOR SOIL: ", XSOIL: MUSOIL = 1.6 * XSOIL

100 FOR X =0 TO (X1 - 1)
110 FOR Y = DH TO DH + 100
115 FOR Z = 0 TO 3000

120 R=SQR((X +.5) * (X +.5) + (Y +.5) * (Y +.5) + (Z+.5) * (Z+.5))
124 AX=DH * R/ (Y +.5)
126 SX =R - AX

140 GOSUB 800

145 NEXT Z

150 NEXT Y

160 PRINT X, FLX#: NEXT X
170 FLOOR# = FLX#

200 FOR X = X1 TO (X2 + 100)

202 YTOP = DH - ((X + .5 - X1) * TAN(SLP))

204 IF YTOP < MH THEN YTOP = MH

210 FORY = YTOP TO DH - |

212 RO = SQR((X +.5) * (X +.5) + (Y +.5) * (Y +.5))

215 FOR Z =0 TO 3000

220 R =SQR((X +.5) * (X +.5) + (Y +.5) * (Y +.5) + (Z+.5) * (Z +.5))
222 SON = (X +.5 - X1 - (DH - (Y +.5)) / TAN(SLP))) * SIN(SLP)

-38-



224 SOD = SIN(SLP + ATN((Y +.5) / (X + .5)))
226 SX = (R / RO) * (SON / SOD)

228 AX =R - SX

240 GOSUB 800

245 NEXT Z

250 NEXT Y

260 PRINT X, FLX#: NEXT X

270 WALL# = FLX# - FLOOR#

300 FOR X = X1 TO (X2 + 100)

305 IF X1 = 0 THEN YLIM = DH + 101: GOTO 310

306 YLIM = DH * X / X1

310 FOR Y = DH TO DH + 100

312 FOR Z = 0 TO 3000

320 R = SQR((X +.5) * (X +.5) + (Y +.5) * (Y +.5) + (Z+.5) * (Z +.5))
322 IF (Y +.5)> YLIM THEN AX = DH * R / (Y +.5): SX = R - AX: GOTO 340
328 RO = SQR((X +.5) * (X +.5) + (Y +.5) * (Y +.5))

330 SON = (X +.5 - X1 - (DH - (Y +.5)) / TAN(SLP))) * SIN(SLP)

332 SOD = SIN(SLP + ATN((Y +.5) / (X +.5)))

334 SX = (R / RO) * (SON / SOD)

336 AX =R - SX

340 GOSUB 800

345 NEXT Z

350 NEXT Y

360 PRINT X, FLX#: NEXT X

370 CORNER# = FLX# - WALL# - FLOOR#

500 PRINT

505 PRINT "TOTAL FLUX =", FLX#

510 PRINT "FLOOR FRACTION =", FLOOR# / FLX#
520 PRINT "WALL FRACTION =", WALL# / FLX#

530 PRINT "CORNER FRACTION =", CORNER# / FLX#
600 GOTO 999

800
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810 FLX# = FLX# + ((EXP(-MUAIR * AX) * EXP(-MUSOIL * SX) * 1.6) / (4 * 3.14159 * R *
R))
820 RETURN

999 END
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